extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C23⋊C4) = C42.D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4+ | C2^2.1(C2^3:C4) | 128,134 |
C22.2(C23⋊C4) = C42.2D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.2(C2^3:C4) | 128,135 |
C22.3(C23⋊C4) = C42.3D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.3(C2^3:C4) | 128,136 |
C22.4(C23⋊C4) = C42.4D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4- | C2^2.4(C2^3:C4) | 128,137 |
C22.5(C23⋊C4) = C23⋊C8⋊C2 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.5(C2^3:C4) | 128,200 |
C22.6(C23⋊C4) = C24.150D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | | C2^2.6(C2^3:C4) | 128,236 |
C22.7(C23⋊C4) = C24.59D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.7(C2^3:C4) | 128,248 |
C22.8(C23⋊C4) = C24.36D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.8(C2^3:C4) | 128,853 |
C22.9(C23⋊C4) = C24.39D4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.9(C2^3:C4) | 128,859 |
C22.10(C23⋊C4) = C4⋊Q8.C4 | φ: C23⋊C4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.10(C2^3:C4) | 128,865 |
C22.11(C23⋊C4) = C24.46D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.11(C2^3:C4) | 128,16 |
C22.12(C23⋊C4) = C24.4Q8 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.12(C2^3:C4) | 128,36 |
C22.13(C23⋊C4) = C23.8C42 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.13(C2^3:C4) | 128,38 |
C22.14(C23⋊C4) = C24.6D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.14(C2^3:C4) | 128,125 |
C22.15(C23⋊C4) = (C2×Q8).Q8 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.15(C2^3:C4) | 128,126 |
C22.16(C23⋊C4) = C8⋊C4⋊C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.16(C2^3:C4) | 128,138 |
C22.17(C23⋊C4) = (C2×D4).D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.17(C2^3:C4) | 128,139 |
C22.18(C23⋊C4) = C4⋊1D4⋊C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | 4+ | C2^2.18(C2^3:C4) | 128,140 |
C22.19(C23⋊C4) = (C4×C8)⋊6C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.19(C2^3:C4) | 128,141 |
C22.20(C23⋊C4) = (C4×C8).C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.20(C2^3:C4) | 128,142 |
C22.21(C23⋊C4) = (C2×Q8).D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | 4- | C2^2.21(C2^3:C4) | 128,143 |
C22.22(C23⋊C4) = C8⋊C4⋊5C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.22(C2^3:C4) | 128,144 |
C22.23(C23⋊C4) = C8⋊C4.C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.23(C2^3:C4) | 128,145 |
C22.24(C23⋊C4) = (C4×C8)⋊C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.24(C2^3:C4) | 128,146 |
C22.25(C23⋊C4) = C25.3C4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.25(C2^3:C4) | 128,194 |
C22.26(C23⋊C4) = (C2×C4)⋊M4(2) | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.26(C2^3:C4) | 128,195 |
C22.27(C23⋊C4) = C24.56D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.27(C2^3:C4) | 128,242 |
C22.28(C23⋊C4) = C24.57D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.28(C2^3:C4) | 128,243 |
C22.29(C23⋊C4) = C24.68D4 | φ: C23⋊C4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.29(C2^3:C4) | 128,551 |
C22.30(C23⋊C4) = (C2×C4).98D8 | central extension (φ=1) | 64 | | C2^2.30(C2^3:C4) | 128,2 |
C22.31(C23⋊C4) = C4⋊C4⋊C8 | central extension (φ=1) | 128 | | C2^2.31(C2^3:C4) | 128,3 |
C22.32(C23⋊C4) = (C2×Q8)⋊C8 | central extension (φ=1) | 128 | | C2^2.32(C2^3:C4) | 128,4 |
C22.33(C23⋊C4) = C23.19C42 | central extension (φ=1) | 64 | | C2^2.33(C2^3:C4) | 128,12 |
C22.34(C23⋊C4) = C23.30D8 | central extension (φ=1) | 32 | | C2^2.34(C2^3:C4) | 128,26 |
C22.35(C23⋊C4) = C24⋊C8 | central extension (φ=1) | 16 | | C2^2.35(C2^3:C4) | 128,48 |
C22.36(C23⋊C4) = C23.15M4(2) | central extension (φ=1) | 32 | | C2^2.36(C2^3:C4) | 128,49 |
C22.37(C23⋊C4) = (C2×D4)⋊C8 | central extension (φ=1) | 32 | | C2^2.37(C2^3:C4) | 128,50 |
C22.38(C23⋊C4) = (C2×C42).C4 | central extension (φ=1) | 32 | | C2^2.38(C2^3:C4) | 128,51 |
C22.39(C23⋊C4) = C42⋊C8 | central extension (φ=1) | 32 | | C2^2.39(C2^3:C4) | 128,56 |
C22.40(C23⋊C4) = C42⋊3C8 | central extension (φ=1) | 32 | | C2^2.40(C2^3:C4) | 128,57 |
C22.41(C23⋊C4) = C23.2M4(2) | central extension (φ=1) | 32 | | C2^2.41(C2^3:C4) | 128,58 |
C22.42(C23⋊C4) = C24.5D4 | central extension (φ=1) | 32 | | C2^2.42(C2^3:C4) | 128,122 |
C22.43(C23⋊C4) = C2×C23⋊C8 | central extension (φ=1) | 32 | | C2^2.43(C2^3:C4) | 128,188 |
C22.44(C23⋊C4) = C2×C22.M4(2) | central extension (φ=1) | 64 | | C2^2.44(C2^3:C4) | 128,189 |
C22.45(C23⋊C4) = C2×C22.SD16 | central extension (φ=1) | 32 | | C2^2.45(C2^3:C4) | 128,230 |
C22.46(C23⋊C4) = C2×C23.31D4 | central extension (φ=1) | 32 | | C2^2.46(C2^3:C4) | 128,231 |
C22.47(C23⋊C4) = C2×C23.9D4 | central extension (φ=1) | 32 | | C2^2.47(C2^3:C4) | 128,471 |
C22.48(C23⋊C4) = C2×C2≀C4 | central extension (φ=1) | 16 | | C2^2.48(C2^3:C4) | 128,850 |
C22.49(C23⋊C4) = C2×C23.D4 | central extension (φ=1) | 32 | | C2^2.49(C2^3:C4) | 128,851 |
C22.50(C23⋊C4) = C2×C42⋊C4 | central extension (φ=1) | 16 | | C2^2.50(C2^3:C4) | 128,856 |
C22.51(C23⋊C4) = C2×C42⋊3C4 | central extension (φ=1) | 32 | | C2^2.51(C2^3:C4) | 128,857 |
C22.52(C23⋊C4) = C2×C42.C4 | central extension (φ=1) | 32 | | C2^2.52(C2^3:C4) | 128,862 |
C22.53(C23⋊C4) = C2×C42.3C4 | central extension (φ=1) | 32 | | C2^2.53(C2^3:C4) | 128,863 |
C22.54(C23⋊C4) = C24.D4 | central stem extension (φ=1) | 16 | | C2^2.54(C2^3:C4) | 128,75 |
C22.55(C23⋊C4) = C23.4D8 | central stem extension (φ=1) | 32 | | C2^2.55(C2^3:C4) | 128,76 |
C22.56(C23⋊C4) = C2.C2≀C4 | central stem extension (φ=1) | 32 | | C2^2.56(C2^3:C4) | 128,77 |
C22.57(C23⋊C4) = (C2×C4).D8 | central stem extension (φ=1) | 32 | | C2^2.57(C2^3:C4) | 128,78 |
C22.58(C23⋊C4) = C23.Q16 | central stem extension (φ=1) | 32 | | C2^2.58(C2^3:C4) | 128,83 |
C22.59(C23⋊C4) = C24.4D4 | central stem extension (φ=1) | 32 | | C2^2.59(C2^3:C4) | 128,84 |
C22.60(C23⋊C4) = (C2×C4).Q16 | central stem extension (φ=1) | 32 | | C2^2.60(C2^3:C4) | 128,85 |
C22.61(C23⋊C4) = C2.7C2≀C4 | central stem extension (φ=1) | 32 | | C2^2.61(C2^3:C4) | 128,86 |